

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 392
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Interpretation of the meaning of natural
language phrases in problem-oriented

systems
Sayyada Muntaha Azim Naqvi

Abstract---- The organization of a natural language is one of the most important problems in the field of artificial intelligence. The
expressive power of a natural language makes it difficult to formalize and eliminate ambi-guities in understanding phrase
meanings. This article considers the approach to interpreting natural language phrases based on the "Meaning-Text" theory. The
key point is an intentional relationship. This allows the system to lead a more meaningful relationship. The "Eliza-Student" software
is built in the developed algorithms, is an encompassing domain of the Unified State Exam (the Russian abbreviation is "USE", an
English analogue is SAT) in informatics . The developed system is able to explain actions performed during the analysis of the text,
which contains user questions on solving certain tasks in informatics. It seems that the reciprocal form of interaction seems to be the
most natural in the learning process. The analysis process is divided into a sequence of stages (preliminary, morphological,
syntactic and semantic analysis). Each of them uses different models of language and subject domain. The proposed approach is
based on the following ideas: abstraction from the subject area to the latest stages of analysis and focus on the result, the
construction of the most probable, perhaps incomplete, representation of the future, despite the incompleteness of the initial
information or possible errors in the analysis process.

Keywords--- knowledge representation , human-machine interface , natural language , tasks in informatics , morphological
analysis , syntax analysis , semantic analysis , frame model , "meaning-text" model , dialogue with program , natural language
interface , program systems

1 Introduction: The way people interact with
computers changes with technology
advancements. An interface with a large number of
forms has become a common thing. But in some
cases it becomes too complicated. This leads to the
fact that the user needs to undergo certain training
in order to interact with such a system. The most
progressive form of interaction with a computer
system, which is devoid of such a
drawback. Moreover, such an arrangement has a
fair amount of apparent advantages. For example,
absence of a formalization step allows the user to
make up an arbitrary request much faster.
Organization of a dialogue in the natural language
since 1950s. Actually, the main problem is natural
language processing, ie extracting the sense that a
user is trying to convey using the text and
presentation in the form of suitable for further
processing by a computer.
2 Literature Review:
One of the first systems to interact with natural
language was ELIZA developed by Joseph
Weizenbaum [1]. It simulated a conversation with

a psychotherapist using the active listening
technique. The core of ELIZA was a set of patterns
based on key words. Even now some chatterbots
use similar algorithms. Another example could be
PARRY [2], Eliza's "opponent", imitating the
behavior of a paranoid schizophrenic. PARRY was
a much more serious program. One of the most
advanced systems of such class is ALICE [3], who
is a number of times winner of the Löbner
Prize. ALICE-like programs, but at the same time
they are not able to conduct a meaningful
dialogue.
A natural language, unlike formal ones, was
formed spontaneously. This led to the emergence
of ambiguities at all levels of perception, from
phonetics and morpho-logy to semantics
itself. This makes the understanding of the NL in
its entirety an incredibly difficult task. In
connection, there has been formed a class of
systems. This class includes the diagnostic system
MYCIN [4], which used the questionnaire
language ("yes / no" questions) as a form of
communication.
This paper considers an intermediate stage. By
natural language we mean a problem-oriented
subset of the Russian language, ie the part of the
NL that is most likely to be used for.

Sayyada Muntaha Azim Naqvi is currently pursing MS degree
program in Software Engineering in Government Collage University
Faisalabad Pakistan, PH +92-343-8787655. E-mail:
muntaha.naqvi.s@gmail.com

IJSER

http://www.ijser.org/
http://www.swsys.ru/index.php?page=infotg&id=5853&lang=
http://www.swsys.ru/index.php?page=infotg&id=5843&lang=
http://www.swsys.ru/index.php?page=infotg&id=5844&lang=
http://www.swsys.ru/index.php?page=infotg&id=5845&lang=
http://www.swsys.ru/index.php?page=infotg&id=5846&lang=
http://www.swsys.ru/index.php?page=infotg&id=5846&lang=
http://www.swsys.ru/index.php?page=infotg&id=5847&lang=
http://www.swsys.ru/index.php?page=infotg&id=5848&lang=
http://www.swsys.ru/index.php?page=infotg&id=5849&lang=
http://www.swsys.ru/index.php?page=infotg&id=5850&lang=
http://www.swsys.ru/index.php?page=infotg&id=5851&lang=
http://www.swsys.ru/index.php?page=infotg&id=5851&lang=
http://www.swsys.ru/index.php?page=infotg&id=5852&lang=
http://www.swsys.ru/index.php?page=infotg&id=5852&lang=
http://www.swsys.ru/index.php?page=infotg&id=5842&lang=

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 393
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

When designing a system that could communicate
on the given topic, it is necessary to introduce
knowledge of the subject domain into
it. Nowadays, there is a large number of
knowledge of formalisms [5], from semantic cases
of C. Philmore [6] and the conceptual
dependencies of R. Schenk [7] to network and
logical models, for example, semantic networks
and predicate logic. Despite all the diversity, there
is no universal method suitable for any text.
However, nowadays, there are platforms that
allow building interactive systems capable of
answering some questions ("Who ...?", "When ...?",
"Where ...?", "Is ...?" And so on), which are
formulated as one or several sentences. These
platforms include IBM Watson [8] and Microsoft
Cognitive Services [9]. They are already used to
solve a large number of problems, for example, to
diagnose cancer based on a patient's card. Of
course, the system does not understand what a
cancer is (as a doctor understands), but it can not
detect signs of cancer.
Despite the apparent intelligence of such systems,
they can not answer the question of "how", ie
explain the course of decision-making. We believe
that the ability to explain why it is received is such
a solution. Explanations allow to acquire
knowledge and gain experience. Therefore, we
intentionally limit the range of tasks to be solved.
We choose the problem of explaining the
algorithms for solving the problems of the Unified
State. The scope of the problems includes the
knowledge of various areas of computer science (in
particular, algorithmization): working with various
units of information and different numbers of
notations, programming languages, logical
problems, problems from set and graphs theories
and etc. Most of them are solved quite simply, but
some require a more "intelligent" approach. The
other important thing is that most of the tasks are
formulated in a text form. The developed system
allows a user to formulate tasks either "as-is" or in
the form of a question. This form of interaction is
the most natural in the learning process.
 The goal of this paper is to consider the approach
to constructing systems with a dialogue
domain. Since the original system, the examples
have been translated into English. Such examples
may seem wrong from the perspective of English
grammar, so they should not be considered from

that perspective. Russian analogues are given in
the description.
The paper is organized as follows. Section 3
contains a description of the input data and a
general principle of the text analysis. Sections 4-6
describe the sequential stages of the
analysis. Section 7 describes the general structure
of software implementation and its main
components. Section 8 draws a conclusion.
3 Input structure and analysis principle:
The most important part of an input is the text
itself. The texts in question are of a small size. It is
also assumed that the text does not contain
spelling or grammatical errors, ie belongs (The
input text may not carry any meaning or it may
belong to a completely different subject domain.
from the system should not be expected in this
case.) to the considered natural
language. Depending on a subject domain, an
input text may contain other forms of
information. In particular, exam tasks can contain
formulas, tables, program texts in various
programming languages and graphic
information. However, in most cases such forms
are rare or not used at all.
The most detailed theory is based on AK
Zholkovsky and I. Melchuk [10]. This model is
prevalent to the fact that it was originally oriented
to computer implementation. In connection with
the spread of homonymy and synonymy in a
natural language, the model presents a multi-step
transition from a text to its meaning. Thus tier
structure is used by analogy with a natural
language. Most modern systems are based on the
ideas of the "Meaning-Text" theory in one way or
another. The linguistic processor ETAP-3 [11],
which is used for a preliminary automatic syntax
markup of the SinTagRus texts corpora, can be
given as an example of such a system.
4 Preliminary analysis stage:
The goal of the preliminary stage is to extract
additional information from the text and to form
the text for further processing.
Tables and pictures are first to extract. Each of the
extracted objects receives numbered alias (starting
with a "table" keyword for tables and a
"picture"). At the current stage of the system
development, only tables with textual information
are processed. Pictures are extremely rare and
require specific processing algorithms. Lists and
formulas are detected using context free

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 394
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

grammars. Lists are processed the same way as
tables. Formulas receive special tag and remain in
the text.
On the other hand, the structure of the text. After
extracting the remaining text is passed to a
morphological analysis module.
5 Morphological analysis:
As an input data for a morphological model, we
used the OpenCorpora project [12]. To define a
morphological analysis.
A word is understood as a finite string of symbols
of NL. Thus, a word means all words in the sense
we are familiar with, as well as punctuation. The
word can be in one of its wordforms or in an initial
form (lemma).
A sentence is a finite sequence of words, the last of
which is a punctuation.
A sub-tag is a morphological information unit
(grammeme) represented as a string, which can
have one of the fixed set of values. We use the
OpenCorpora notation to denote sub-tags. For
example, for a word "mom" the sub-tags are
NOUN (noun), anim (animate), femn (feminine)
etc. We chose 58 sub-tags (57 real and 1 fictitious)
which are significant for subsequent stages of
analysis.
A tag is a set of sub-tags for a given
wordform. Correct tag refers to the tag, which is
correct in terms of NL grammar. For example, in
the sentence "Mom washed a frame" the correct tag
for the word "washed" is the following set: T =
{VERB (verb), tran (transitive), sing (single), femn
(feminine), pres (present)}.
Tags can be represented as constant length vectors
(58 bits - by the number of sub-tags). This vector
can also be represented as a number (58 bit
unsigned integer). In the course of the study, it was
discovered that the grammar of the Russian
language allows about 500 tags using the above-
mentioned number of sub-tags.
The goal of morphological analysis is the
breakthrough of the word, the right of the
morphological analysis.
The source text is divided into words using regular
expressions. This approach is applicable for most
cases, but it can allocate additional words (split
numbers, allocating integer and fractional parts,
separating abbreviations, etc.). Sentences on the
basis of the following assumptions.

1. The sentence must end with a punctuation mark,
namely a dot, an ellipsis, and interrogative or
explanation point.
2. If a point separates two words that are numbers,
then they are combined into one word.
3. The word preceding the final punctuation mark
can not have a length equal to one. Otherwise, if it
is not a pronoun, it is believed to be a reduction (or
part of the name)
4. There should be a dictionary word (word that is
in a systems of a dictionary) or a number before a
dot (otherwise use assumption no. 3).
The abovementioned assumptions are sufficient to
handle most cases. An exception can be found in
many texts. Texts of tasks in informatics are
correctly divided into sentences by this algorithm.
At the next stage. The algorithm passes the
sentence. Each word of the sentence is assigned an
ambiguity class. The ambiguity class of a
wordform x refers to the intersection of all possible
tags of x. For example, for the word "washed" the
ambiguity class will be the following (noun "soap"
and the verb "wash"):
{NOUN (noun), VERB (verb), inan (inanimate),
nomn (nominative), accs (accusative), imp
(imperfect), femn (feminine), neut (neutral), ind
(indicative), sing (single) , plur (plural), past (past),
trans (transitive)}
The function f: X ®Y that associates the word form

X with its ambiguity class is called ambiguity
class model, as well as the corresponding data
structure. DAFSA (DAWG) implementation
allowing storing pairs "string key - ambiguity class
(number)".
The ambiguity class of a word can contain
ambiguities from the point of view of the grammar
of EH. For example, the ambiguity class, which is
indicated above, contains two sub-tags that denote
a part of speech. In order to build the correct tag
for a given word, it is necessary to exclude some
sub-tags from the ambiguity class. For this
purpose, sub-tags are divided into grammatical
groups, except for four sub-tags, which are never
excluded. This, for example, refers to the sub-tag
Anph denoting an anaphoric pronoun. It appears
only in pronouns, which are related to other parts
of the text by the coreference relation. Sub-tags
within a group are mutually exclusive.
We train one multiclass classifier for every sub-tag
group. The number of classes is equal to the

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 395
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

number of sub-tag groups. Training algorithm use
the SVM method and the "one-against-all"
strategy. Parameter evaluation is done via grid
search. Learning and tagging processes use the
same algorithm of converting words into
vector. The following information is used to
construct the vector.
1. Correct sub-tags of 3 prior words. These words
will be recognized. If there is no word, then its tag
is a zero vector.
2. The ambiguity class for the word is
recognized. This vector is the starting point for a
classification process.
3. A pseudo-ending of the recognized
word. Getting a real ending without using special
dictionaries is quite difficult. However, even a
pseudo-ending can provide a lot of useful
information about grammatical attributes of a
word. To get a pseudo-ending, it is necessary to
use a Porter's stemmer. Then the result is encoded
as a vector of the constant length 10 (the maximum
length of the pseudo-ending we get in the case of
experiments with real texts and Porter's stemmer).
4. A word length. The length of the speech is
official (prepositions, conjunctions, etc.).
5. The ambiguity classes of three following
words. If there is no word, then the zero vector is
used.
6. Most possible tags and their probabilities (using
bigrams and trigrams). When constructing ngrams,
we use a word's word instead of a word. The

practical use of ngrams with does not
prove to be useful. As it was said above, the
Russian language grammar allows about 500
tags. If grammatical constraints on the
compatibility of words are taken into account, the
actual size of 3-gram would be much less than
5003.
After applying all received classifiers to a
recognized word, all unnecessary sub-tags will be
excluded from its entropy class, and only those
that enter the corp. Sentence analysis ends when
all words are processed.
The main properties of the algorithm include.

• It combines advantages of two
approaches (dictionary and machine
learning). If a word does not have
homonyms it is processed
unambiguously. For other words the
problem with homonymy is solved using

machine learning. The accuracy we have
is shown in table 1. The training subset
included 2 thousand sentences with no
homonymy. Testing was conducted on a
subcorpus of 10 thousand sentences. The
accuracy is sufficient for practical
use. Currently, we plan to use more
corporations for training purposes.

6 The algorithm passes the sentence. The complexity

is where.
• The algorithm can process unknown

words. But the tagging accuracy depends
heavily on the number of dictionary
words.

The lexical context. When resolving homonymy, a
window of seven words is considered (a
recognizable word and 3 words on both
sides). Experiments have shown that a window of
this length takes into account the nearest context in
the best possible way.

• The result of the algorithm is a single
parsing option, unlike most systems that
provide all parsing options. This greatly
facilitates the syntax analysis of the step,
although in some cases (if errors are
present).

Table 1
Tagging accuracy. A training set consists of 2
thousand sentences. Testing was conducted on a
corpora of 10 thousand sentences

Sub-tag group Accuracy (%)

Part of speech 90

Verb form 96

Gender 97

Mood 99

Case 85

Person 98

Tense 98

Transitivity 96

Voice 100

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 396
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Animacy 100

Here are some examples of a morphological
analysis. The sentences were taken from the FIPI
website (fig.1, 2).
Syntax analysis
Traditionally, the goal of syntax parsing is to
determine if the input string belongs to a given
language. For computer linguistics the more
important result of analysis is a syntax tree. To
construct such methods, we decided to abandon
machine learning methods and to use a more
traditional grammar approach. Despite the fact
that machine learning leads to more robust results,
the choice is on the traditional approach.
The free order of words in English [13-15]. For the
most popular approach is to use dependency
grammars. Such grammars make it possible to
construct non-projective dependencies. Such
dependencies constitute a rather large part of
corpora (approximately 10%).
In general, the dependency grammar is specified
by a set of rules. Such rules are called surface
syntactic relations (SSR) within the "Meaning-Text"
theory. SSRs, grammatical attributes, position and
other dependency types of main and dependent
words. This paper considers a grammar build on
SSR set given by IA Melchuk. We selected the most
recent ones (some were merged). The remaining
SSRs represent rare language constructions that are
unlikely to be used in a dialogue on the tasks in
informatics.
The core of the "Meaning-Text" theory is an
explanatory combinatorial dictionary. The
construction of such a dictionary is for the time
being consumed, so we decided to abandon
it. Instead we divide SSR set into two features:
1) "Power": in absence of an explanatory
combinational dictionary some SSRs can be built
with errors (for example, construction inconsistent
definitions). All SSRs are divided into:
a. "Strong": the ones that are built correctly all the
time.

b. "Weak": the ones that can be built with
errors. Building algorithms of such SSRs are built
upon different heuristics.
2) Use case: this feature characterizes the
dependency with respect to use within a segment
or between segments. A segment is defined here as
a sequence of words in the sentence between
punctuation marks. In this scope SSRs are divided
into:
a. Internal
b. External
One SSR can have multiple use cases with different
building algorithms. Every case is treated like a
separate SSR.
Thus, all SSRs can be divided into 4 groups. In this
paper, these groups are called working
sets. Working sets are represented in table 2.
Table 2
Working sets

Use case
Power

Strong Weak

Internal Strong internal Weak internal

IJSER

http://www.ijser.org/
http://www.swsys.ru/uploaded/image/2017-4/image058.gif

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 397
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

External Strong external Weak external

Each working set can be considered as a separate
grammar. The purpose of splitting into sets is that
it does not contain errors. It is also easier to
maintain determinism in sets, rather than in the
whole grammar. This property is necessary for the
correct operation of the parsing algorithm.
Each sentence is parsed separately. First, the
algorithm splits a sentence into segments and
constructs the internal strong dependencies using
the appropriate working set and the algorithm
developed by M. Covington [16]. This will result in
one or more syntax trees for every segment. If
there are several trees, then the merge algorithm
(16). The original algorithm in the process of work
maintains two lists of trees: headless (tree roots)
and all (all vertices.) The modification is to
simulate the algorithm, starting with a certain step.
merged. Then we put a reference to the first tree in
the "headless" list and references to all the vertices
from the second to the "all" list. If the "headless" list
does not contain any elements after running the
modified algorithm with these lists, then the first
tree became the subtree of the second one, and the
merge was successful. Otherwise, it is concluded
that the merge is not possible.) With a weak
internal working set. Each procedure iteration
applies the merge algorithm to all trees in pairs. As
soon as at least one merge occurs, two merged
trees are replaced by the merge result and the
algorithm moves to the next iteration. The number
of trees. The algorithm finishes its work when the
number of trees on the current iteration does not
change.
The same procedure is used to construct external
dependencies (first with a strong set, then with a
weak set). The result of the algorithm is the one
surface dependency tree.
However, this tree is quite difficult to use for
further analysis, because the number of
connections is too big. The tree of deep
dependencies (DD-tree) is of great interest. Using
such trees, one can already see a predicate (action),
an object over which the action is carried out, an
oblique semantic object, a semantic subject and
etc. A formal definition of DD trees is the subject of
controversy. This paper uses the definition given
in [17]. The surface representation is translated into
the deep recursive procedure. We omit the details

of this procedure, because it is of experimental
nature and requires further development.

IJSER

http://www.ijser.org/
http://www.swsys.ru/uploaded/image/2017_4/13.jpg
http://www.swsys.ru/uploaded/image/2017_4/14.jpg
http://www.swsys.ru/uploaded/image/2017_4/15.jpg

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 398
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

Instead, we give some examples of the surface and
deep structures obtained (fig. 3-6).
The set of DD-trees are passed to the semantics
module.
Semantic analysis
In this paper, semantic analysis refers to the
problem of recognizing in an input of a text (a set
of DD-trees) one of the tasks of the subject
domain. If the task is found, the system tries to
extract its parameters and solve it. Oth-erwise
there is a message for a user showing that.
For a dialogue, you need to be constructive, the
system must have a knowledge base. In this case,
we decided to use a very compact structure. At the
top of the hierarchy is the frame-class "Task",
which defines the abstract task in the given
domain. The names of the slots and their
description are shown in table 3.
For each task class there is a corresponding frame-
template which inherits the frame "Task". Each
fraud-template sets its own value for the
"Parameters" set, defining types and possible
values of task parameters for a given class of
tasks. Each such frame-template allows for the
generation of an unlimited number of instance
frames corresponding to specific tasks with given
parameters, result, explanations, etc.
The slots from table 3 correspond to the concepts
of the domain, except for the ones associated with
the templates. The templates within the framework
of this paper represent some form of a case
analysis for solving a particular problem of a
semantic analysis. They specify the expected

structure or parts of the structure of the DD trees
obtained in the parsing phase.
Table 3
Slots of frame-class "Task"

Slot name Description

Identifier
This slot represents the string identifier of the
task

Parameters
A list of task parameters. Each child contains
its own list of parameters. Parameters can
have default values

Input
Represents a list of DD trees obtained as a
result of the previous step. It is set at the
beginning of the work with the frame

Patterns

Templates, the purpose of which is to find
matches in the "Input" slot. Templates allow
to keep some values for the next assignment
to other slots, in particular to the slot
"Parameters"

Match

Checks the list of templates to match the
input. If at least one template has found
matches, then the value of this slot is set to
True, and the value of the slot "Matching
pattern" becomes equal to a specified template

Matching
pattern

It corresponds to the syntactic pattern with
which the match is found. Sets the value of the
"Parameters" slot

Result

The result of the task. Requires the value of
the slot "Matching pattern". Calls the
corresponding task from the task module. Sets
the value of the "Explanations" slot

Explanations

Step-by-step textual explanations of the task
soling algorithm. Requires the value of the
"Result" slot. The default value is "empty
string"

The following templates are supported.
• Lemma matching pattern. This pattern

checks if the tree vertex contains the same
lemma as the pattern provides. In order to
avoid describing a large number of
patterns, synonymous series are
defined. Each series contains lemmas that

IJSER

http://www.ijser.org/
http://www.swsys.ru/uploaded/image/2017_4/16.jpg

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 399
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

are understood by the system in the same
way.

• Dependency matching pattern. This
pattern checks if two given tree vertexes
are connected using the specified
dependency (DD-tree definition used
allows only 10 dependency types).

• Branching pattern. This pattern allows
analyzing a tree width structure.

• Chained pattern. This pattern allows
analyzing a tree height structure.

• Skip pattern. This pattern allows skipping
any amount of vertexes in a case if only a
partial information is needed.

The algorithm is sequential checking of each
frame-template to match the set of input DD-trees
and generating an instance frame for a
corresponding task. An instance frame contains all
the necessary information to form a request for a
solution and explanation modules for obtaining a
relevant response. A part of the frame structure is
shown in figure 7.
Below there are some answers to user questions.
7 Implementation:
In order to achieve our goal of constructing a
software system with the natural language in the
specified subject domain, we developed the "Eliza-
Student" system in the C # language. At the
moment the system contains 10 projects that solve
various tasks: language models, processing,
corporations, replenishment of expert knowledge,
problem solving, etc. The total amount of the
program code is approximately 5 thousand
lines. The main components of the system are
shown in figure 8.

The ElizaInterface component represents the
program interface (figures 9, 10). The interface is
used to display the text, customizing the settings,
as well as using interactive Help.
The OGESolver component allows solving and
explaining tasks in Computer science. This
component is developed using the "factory" design
pattern, which allows you to quickly and easily
expand the tasks set. The main class here is the
AlgorithmFactory, which allows creating an
instance of a task by ID and parameters that
contain an algorithm for solving and explaining
the problem.
The library Eliza is responsible for processing
requests in the natural language. In the
morphological analysis phase, the tags are
modeled using the Tag flags enumeration. This
allows you to check whether or not sub-tags almost
instantly (for several logical operations). The stages
of the preliminary and morphological analysis are

IJSER

http://www.ijser.org/
http://www.swsys.ru/uploaded/image/2017_4/17.jpg
http://www.swsys.ru/uploaded/image/2017_4/18.jpg
http://www.swsys.ru/uploaded/image/2017_4/19.jpg
http://www.swsys.ru/uploaded/image/2017_4/20.jpg

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 400
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

carried out by the class MorphologyModel. In
addition, this class allows you to build a new
morphological model using the corpora and
dictionary files. The LIBSVM [18] library is used as
the implementation of support vector machines.
The main classes in the parsing phase are
SyntaxModel, which contain the basic methods for
building and merging dependency trees, and
Dependency Grammar, which contain the working
sets described in the syntax analysis section that
are initialized when the program is started. Each
set is represented by a set of rules, each of which is
inherited from the AbstractSSR class. Each of these
classes contains a simple method for constructing a
particular SSR (usually the complexity of such
methods is O (1)) that looks like this:
 protected override bool TryBuildRelation (Tree
first, Tree second, out Tree head)
 {
 Lexem f = first.Key;
 Lexem s = second.Key;
 head = first;
 if ((s.Tag & (Tag.NounLike | Tag.Noun))! =
0 && (s.Tag & (Tag.Instrumental | Tag.Genitive))!
= 0 && (s.Tag & Tag.Animated)! = 0)
 {
 if (((f.Tag & (Tag.Gerund | Tag.Infinitive
| Tag.Participle | Tag.ShortParticiple))! = 0) ||
(f.Tag & (Tag.Noun | Tag.Noun))! = 0)
 {
 head.AddChild (second,
SurfaceRelationName.Agentive);
 return true;
 }
 }
 return false;
 }
Such methods check the morphological tags of tree
roots. In rare cases, it is required to check for the
existence of a certain dependency or heirs in the
tree, for example, for constructing a tree for the
phrase "each of which". It is extremely difficult to
establish all the links on the first pass, so we see
the need to separate the grammar into working
sets and perform multipass ana- lysis.
At the stage of semantic analysis, the
SemanticsModel class analysis the one of the tasks,
passing through all frames and setting the value of
the "Input" slot. If the value of the "Match" slot has
now become true, the values of the "Result" and

"Explanations" slots, that contain all the
information necessary for the user, are returned.
8 Conclusion:
The described software system exists in the form of
a prototype, which performs the basic functions
and is able to conduct a constructive dialogue
about some tasks. The developed algorithms in the
early stages of the text analysis (morphological and
syntactic analysis) can be used to process texts
from other subjects. The semantic analysis is the
most problematic part. We tried to build the
system in such a way that it was independent of a
particular subject domain as much as possible. At
the next stage, we plan to isolate a purely linguistic
part of the meaningful process of extraction, that is,
the extraction process (which can be extracted from
the text itself using the lexical context) from the
extralinguistic one (including knowledge of the
problem area, inference, etc.). For this purpose we
plan to use the LRA semantics [17].
The constructed prototype is the consistency of the
general idea. Expert knowledge is much deeper
than in systems that respond to keywords and
their order. "This is the case," he said. "This method
requires a lot of work to solve the problem. In
addition, it is able to explain the problem of
solving the problem. This important feature
distinguishes it favorably among
systems. Explanation allows one to gain experience
and acquire new knowledge. We believe that this
approach is the future.

References
[1] Weizenbaum J. Computer power and human

reason: from judgment to calculation. WH
Freeman and Company Publ., 1976, 300 p.

[2] Güzeldere. Dialogues with colorful personalities
of early AI. Stanford Humanities Review. 1995,
no. 4, pp. 161-169.

[3] ALICEBOT. Available at: http://www.alicebot.org/
(accessed March 3, 2017).

[4] Buchanan BG, Shortliffe EH Rule Based Expert
Systems: The MYCIN Experiments of the Stanford
Heuristic Programming Project. Addison-Wesley
Publ., Ed. Reading, 1984.

[5] Batura TV Semantic analysis and the meaning of
representation method in computer
linguistics. Programmnye produkty i sistemy
[Sofrware & Systems]. 2016, no. 4, pp. 45-57 (in
Russ.).

[6] Filmore CJ The Case for Case. Universals in
Linguistic Theory. E. Bach, CJ Filmore

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 9, Issue 7, July-2018 401
ISSN 2229-5518

IJSER © 2018
http://www.ijser.org

(Eds.). London, Holt, Rinehart ad Winston Publ.,
1968, pp. 1-25.

[7] Schenk RC, Goldman NM, Rieger III CJ, Riesbeck
CK Conceptual information processing. Norh-
Holland Publ., 1975. (Russ .: Moscow, Energiya
Publ., 1980, 360 p.).

[8] Watson. Available at:
https://www.ibm.com/watson/ (accessed March 3,
2017).

[9] Cognitive-Services. Available at:
https://azure.microsoft. com / en-us / services /
cognitive-services / (accessed March 3, 2017).

[10] Melchuk IA Opyt teorii lingvisticheskikh modeley
"Smysl-Tekst" [Experience of "Text-Meaning"
lingustic models]. Moscow, Shkola "Yazyki
russkoy kultury" Publ., 1999, 2nd ed., 346 p. (in
Russ.).

[11] Computer lingustics laboratory. Available at: http:
//cl.iitp. en / en / etap3 / (accessed March 3, 2017).

[12] Opencorpora. Available at:
http://www.opencorpora.org/ (accessed March 3,
2017).

[13] Chomsky N. Syntactic Structures. Mouton, Walter
de Gruyter Publ., 1957, 117 p.

[14] Winograd T. Understanding natural
language. NY, Academic Press, 1972, 294 p.

[15] Woods WA Transition network grammars for
natural language analysis. Communications of the
Association for Computing Mchinery. 1970, no. 10,
pp. 591-606.

[16] Convington MA A Fundamental algorithm for
dependency parsing. Proc. 39th Annual ACM
Southeast Conf. 2001, pp. 95-102.

[17] Dikovsky A. Linguistic↔Rational Agents'
Semantics. Jour. of Logic, Language and
Information, pp. 1-97. Available at:
https://doi.org/10.1007/s10849-017-9258-y
(accessed 10 June, 2017).

[18] LIBSVM - A Library for Support Vector
Machines. Available at:
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
(accessed 10 June, 2017).

IJSER

http://www.ijser.org/

